Regulation of autophagy by the p300 acetyltransferase.

نویسندگان

  • In Hye Lee
  • Toren Finkel
چکیده

Autophagy is a regulated process of intracellular catabolism required for normal cellular maintenance, as well as serving as an adaptive response under various stress conditions, including starvation. The molecular regulation of autophagy in mammalian cells remains incompletely understood. Here we demonstrate a role for protein acetylation in the execution and regulation of autophagy. In particular, we demonstrate that the p300 acetyltransferase can regulate the acetylation of various known components of the autophagy machinery. Knockdown of p300 reduces acetylation of Atg5, Atg7, Atg8, and Atg12, although overexpressed p300 increases the acetylation of these same proteins. Furthermore, p300 and Atg7 colocalize within cells, and the two proteins physically interact. The interaction between p300 and Atg7 is dependent on nutrient availability. Finally, we demonstrate that knockdown of p300 can stimulate autophagy, whereas overexpression of p300 inhibits starvation-induced autophagy. These results demonstrate a role for protein acetylation and particularly p300 in the regulation of autophagy under conditions of limited nutrient availability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

mTORC1 Phosphorylates Acetyltransferase p300 to Regulate Autophagy and Lipogenesis.

Acetylation is increasingly recognized as one of the major post-translational mechanisms for the regulation of multiple cellular functions in mammalian cells. Acetyltransferase p300, which acetylates histone and non-histone proteins, has been intensively studied in its role in cell growth and metabolism. However, the mechanism underlying the activation of p300 in cells remains largely unknown. ...

متن کامل

Bnip3 Binds and Activates p300: Possible Role in Cardiac Transcription and Myocyte Morphology

Bnip3 is a hypoxia-regulated member of the Bcl-2 family of proteins that is implicated in apoptosis, programmed necrosis, autophagy and mitophagy. Mitochondria are thought to be the primary targets of Bnip3 although its activities may extend to the ER, cytoplasm, and nucleus. Bnip3 is induced in the heart by ischemia and pressure-overload, and may contribute to cardiomyopathy and heart failure....

متن کامل

An Intrinsically Disordered Region of the Acetyltransferase p300 with Similarity to Prion-Like Domains Plays a Role in Aggregation

Several human diseases including neurodegenerative disorders and cancer are associated with abnormal accumulation and aggregation of misfolded proteins. Proteins with high tendency to aggregate include the p53 gene product, TAU and alpha synuclein. The potential toxicity of aberrantly folded proteins is limited via their transport into intracellular sub-compartments, the aggresomes, where misfo...

متن کامل

Down-regulation of p300/CBP histone acetyltransferase activates a senescence checkpoint in human melanocytes.

The histone acetyltransferases p300 and cAMP-responsive element-binding protein-binding protein (CBP) are required for the execution of critical biological functions such as proliferation, differentiation, and apoptosis. Both proteins are believed to regulate the activity of a large number of general and cell-specific transcription factors. Here we demonstrate a dramatic decrease in the total c...

متن کامل

Kinetic and mass spectrometric analysis of p300 histone acetyltransferase domain autoacetylation.

Acetylation of proteins by p300 histone acetyltransferase plays a critical role in the regulation of gene expression. The prior discovery of an autoacetylated regulatory loop in the p300 histone acetyltransferase (HAT) domain prompted us to further explore the mechanisms of p300 autoacetylation. Here we have described a kinetic and mass spectrometric analysis of p300 HAT autoacetylation. The ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 284 10  شماره 

صفحات  -

تاریخ انتشار 2009